MAKE A MEME View Large Image mathematica 3d cg parametricplot3d texture torus code program algorithm プログラム コード アルゴリズム 輪環 りんかん ドーナツ どーなつ lissajous リサージュ geometric sculpture geometricsculpture shape ...
View Original:3_Tori_or_3D_Lissajous_figures_/_3つの輪環(りんかん)または立体(りったい)リサージュ図形(ずけい).jpg (3080x3222)
Download: Original    Medium    Small Thumb
Courtesy of:www.flickr.com More Like This
Keywords: mathematica 3d cg parametricplot3d texture torus code program algorithm プログラム コード アルゴリズム 輪環 りんかん ドーナツ どーなつ lissajous リサージュ geometric sculpture geometricsculpture shape geometry sculpture mapping テクスチャ マッピング 模様 もよう abstract 抽象 ちゅうしょう アブストラクト design pattern デザイン パターン graphic グラフィック グラフィクス structure 意匠 構造 symmetry 対称性 たいしょうせい シンメトリー 対称 たいしょう tangle wheel black background tire rim curve round circle a = 12; (* center hole size of a torus *) b1 = 5;(* number of cross *) b2 = 2;(* number of cross *) c = 3; (* distance from the center of rotation *) d = 3; (* number of torus *) w = 3; (* gap width *) SetOptions[ParametricPlot3D, PlotRange -> Full, Mesh -> None, Boxed -> False, Axes -> None, PlotPoints -> 500, ImageSize -> 3000, Background -> Darker[Green, 0.8], PlotStyle -> Directive[Specularity[White, 90], Texture[Import["D:/tmp/71.jpg"]]], TextureCoordinateFunction -> ({#4 + #5, #5/Pi} &), Lighting -> "Neutral"]; f[v_] := Sin[2 Sin[Sin[Sin[v]]]]; x = (a - Cos[t] + w Sin[b1 s]) Cos[b2 s] + c; y = (a - Cos[t] + w Sin[b1 s]) Sin[b2 s] + c; z = w Sin[b1 s] + f[t] + c; rm = Table[{x, y, z}.RotationMatrix[2 i Pi/d, {0, 0, 1}], {i, d}]; ParametricPlot3D[rm, {t, 0, 2 Pi}, {s, 0, 2 Pi}] (*--- The Texture *) a = 12; (* center hole size of a torus *) b1 = 5;(* number of cross *) b2 = 2;(* number of cross *) c = 3; (* distance from the center of rotation *) d = 3; (* number of torus *) w = 3; (* gap width *) SetOptions[ParametricPlot3D, PlotRange -> Full, Mesh -> None, Boxed -> False, Axes -> None, PlotPoints -> 500, ImageSize -> 3000, Background -> Darker[Green, 0.8], PlotStyle -> Directive[Specularity[White, 90], Texture[Import["D:/tmp/71.jpg"]]], TextureCoordinateFunction -> ({#4 + #5, #5/Pi} &), Lighting -> "Neutral"]; f[v_] := Sin[2 Sin[Sin[Sin[v]]]]; x = (a - Cos[t] + w Sin[b1 s]) Cos[b2 s] + c; y = (a - Cos[t] + w Sin[b1 s]) Sin[b2 s] + c; z = w Sin[b1 s] + f[t] + c; rm = Table[{x, y, z}.RotationMatrix[2 i Pi/d, {0, 0, 1}], {i, d}]; ParametricPlot3D[rm, {t, 0, 2 Pi}, {s, 0, 2 Pi}] (*--- The Texture *)
Terms of Use   Search of the Day