MAKE A MEME View Large Image mathematica 3d cg parametricplot3d texture torus code program algorithm プログラム コード アルゴリズム 輪環 りんかん ドーナツ どーなつ トーラス とーらす geometric sculpture geometricsculpture shape ...
View Original:5_Tori_/_5個の輪環(りんかん).jpg (3080x2894)
Download: Original    Medium    Small Thumb
Courtesy of:www.flickr.com More Like This
Keywords: mathematica 3d cg parametricplot3d texture torus code program algorithm プログラム コード アルゴリズム 輪環 りんかん ドーナツ どーなつ トーラス とーらす geometric sculpture geometricsculpture shape geometry sculpture mapping テクスチャ マッピング 模様 もよう design pattern デザイン パターン graphic グラフィック グラフィクス structure 意匠 構造 symmetry 対称性 たいしょうせい シンメトリー 対称 たいしょう white background organic pattern bright indoor food text a = 0; (* center hole size of a torus *) b1 = 6;(* number of angle *) b2 = 3;(* number of wave *) c = 1.5; (* distance from the center of rotation *) d = 5; (* number of torus *) SetOptions[ParametricPlot3D, PlotRange -> Full, Mesh -> None, Boxed -> False, Axes -> None, PlotPoints -> 500, ImageSize -> 3000, Background -> RGBColor[{240, 240, 200}/255], PlotStyle -> Directive[Specularity[White, 70], Texture[Import["D:/tmp/96.jpg"]]], TextureCoordinateFunction -> ({#4, #5 Pi} &), Lighting -> "Neutral"]; f[v_] := Sin[2 Sin[Sin[Sin[v]]]]; x = (a - Cos[t] + f[b1 s]) Cos[s] + c; y = (a - Cos[t] + f[b1 s]) Sin[s] + c; z = f[b2 t]; rm = Table[{x, y, z}.RotationMatrix[2 i Pi/d, {0, 0, 1}], {i, d}]; ParametricPlot3D[rm, {t, 0, 2 Pi}, {s, 0, 2 Pi}] (*--- The Texture *) a = 0; (* center hole size of a torus *) b1 = 6;(* number of angle *) b2 = 3;(* number of wave *) c = 1.5; (* distance from the center of rotation *) d = 5; (* number of torus *) SetOptions[ParametricPlot3D, PlotRange -> Full, Mesh -> None, Boxed -> False, Axes -> None, PlotPoints -> 500, ImageSize -> 3000, Background -> RGBColor[{240, 240, 200}/255], PlotStyle -> Directive[Specularity[White, 70], Texture[Import["D:/tmp/96.jpg"]]], TextureCoordinateFunction -> ({#4, #5 Pi} &), Lighting -> "Neutral"]; f[v_] := Sin[2 Sin[Sin[Sin[v]]]]; x = (a - Cos[t] + f[b1 s]) Cos[s] + c; y = (a - Cos[t] + f[b1 s]) Sin[s] + c; z = f[b2 t]; rm = Table[{x, y, z}.RotationMatrix[2 i Pi/d, {0, 0, 1}], {i, d}]; ParametricPlot3D[rm, {t, 0, 2 Pi}, {s, 0, 2 Pi}] (*--- The Texture *)
Terms of Use   Search of the Day